Skip to contents

Criticality Plot

Usage

plot_estimated_dose_curve_mx(
  name,
  est_doses,
  fit_coeffs,
  fit_var_cov_mat,
  curve_type,
  protracted_g_value = 1,
  conf_int_curve = 0.95,
  place
)

Arguments

name

the dose to plot.

est_doses

List of dose estimations results.

fit_coeffs

Fitting coefficients matrix.

fit_var_cov_mat

Fitting variance-covariance matrix.

curve_type

gamma or neutron.

protracted_g_value

Protracted \(G(x)\) value.

conf_int_curve

Confidence interval of the curve.

place

UI, report or save. Where the plot will be displayed.

Value

ggcurve

Examples

#The fitting RDS result from the fitting module is needed. Alternatively, manual data
#frames that match the structure of the RDS can be used:
fit_coeffs <- data.frame(
  estimate   = c(0.001280319, 0.021038724, 0.063032534),
  std.error  = c(0.0004714055, 0.0051576170, 0.0040073856),
  statistic  = c(2.715961, 4.079156, 15.729091),
  p.value    = c(6.608367e-03, 4.519949e-05, 9.557291e-56),
  row.names =  c("coeff_C", "coeff_alpha", "coeff_beta")
)


fit_var_cov_mat <- data.frame(
  coeff_C      = c(2.222231e-07, -9.949044e-07,  4.379944e-07),
  coeff_alpha  = c(-9.949044e-07, 2.660101e-05, -1.510494e-05),
  coeff_beta   = c(4.379944e-07, -1.510494e-05, 1.605914e-05),
  row.names =  c("coeff_C", "coeff_alpha", "coeff_beta")
)


est_doses <- list(
  list(
    gamma = c(est = 2.173586, lwr = 1.784314, upr = 2.562857),
    neutron = c(est = 1.811322, lwr = 1.486929, upr = 2.135715),
    total = c(est = 3.984907, lwr = 3.271243, upr = 4.698572)
  )
  )

#FUNCTION PLOT_ESTIMATED_DOSE_CURVE_MX
plot_estimated_dose_curve_mx(
  name = "Sample1",
  est_doses = est_doses[[1]],
  fit_coeffs = as.matrix(fit_coeffs)[,1],
  fit_var_cov_mat = as.matrix(fit_var_cov_mat),
  curve_type = "gamma",
  protracted_g_value = 1,
  conf_int_curve = 0.95,
  place = "UI")