
Whole-body dose estimation (Merkle's method)
Source:R/calcs_estimation.R
estimate_whole_body_merkle.RdMethod based on the paper by Merkle, W. (1983). Statistical methods in regression and calibration analysis of chromosome aberration data. Radiation and Environmental Biophysics, 21(3), 217-233. <doi:10.1007/BF01323412>.
Usage
estimate_whole_body_merkle(
num_cases,
case_data,
fit_coeffs,
fit_var_cov_mat,
conf_int_yield = 0.83,
conf_int_curve = 0.83,
protracted_g_value = 1,
genome_factor = 1,
aberr_module = c("dicentrics", "translocations", "micronuclei")
)Arguments
- num_cases
number of cases.
- case_data
Case data in data frame form.
- fit_coeffs
Fitting coefficients matrix.
- fit_var_cov_mat
Fitting variance-covariance matrix.
- conf_int_yield
Confidence interval of the yield, 83% by default.
- conf_int_curve
Confidence interval of the curve, 83% by default.
- protracted_g_value
Protracted \(G(x)\) value.
- genome_factor
Genomic conversion factor used in translocations, else 1.
- aberr_module
Aberration module.
Examples
#The fitting RDS result from the fitting module is needed. Alternatively, manual data
#frames that match the structure of the RDS can be used:
fit_coeffs <- data.frame(
estimate = c(0.001280319, 0.021038724, 0.063032534),
std.error = c(0.0004714055, 0.0051576170, 0.0040073856),
statistic = c(2.715961, 4.079156, 15.729091),
p.value = c(6.608367e-03, 4.519949e-05, 9.557291e-56),
row.names = c("coeff_C", "coeff_alpha", "coeff_beta")
)
fit_var_cov_mat <- data.frame(
coeff_C = c(2.222231e-07, -9.949044e-07, 4.379944e-07),
coeff_alpha = c(-9.949044e-07, 2.660101e-05, -1.510494e-05),
coeff_beta = c(4.379944e-07, -1.510494e-05, 1.605914e-05),
row.names = c("coeff_C", "coeff_alpha", "coeff_beta")
)
case_data <- data.frame(
ID= "example1",
N = 361,
X = 100,
C0 = 302,
C1 = 28,
C2 = 22,
C3 = 8,
C4 = 1,
C5 = 0,
y = 0.277,
y_err = 0.0368,
DI = 1.77,
u = 10.4
)
#FUNCTION ESTIMATE_WHOLE_BODY_MERKLE
estimate_whole_body_merkle(
num_cases = 1,
case_data = case_data,
fit_coeffs = as.matrix(fit_coeffs),
fit_var_cov_mat = as.matrix(fit_var_cov_mat),
conf_int_yield = 0.83,
conf_int_curve = 0.83,
protracted_g_value = 1,
aberr_module = "dicentrics"
)
#> [[1]]
#> [[1]]$est_doses
#> lower estimate upper
#> 1 1.541315 1.931213 2.420912
#>
#> [[1]]$est_yield
#> lower estimate upper
#> 1 0.1980553 0.277 0.3841655
#>
#> [[1]]$AIC
#> [1] 7.057229
#>
#> [[1]]$conf_int
#> yield curve
#> 0.83 0.83
#>
#>