
Heterogeneous dose estimation (Mixed Poisson model)
Source:R/calcs_estimation.R
estimate_hetero_mixed_poisson.RdMethod based on the paper by Pujol, M. et al. (2016). A New Model for Biological Dose Assessment in Cases of Heterogeneous Exposures to Ionizing Radiation. Radiation Research, 185(2), 151-162. <doi:10.1667/RR14145.1>.
Usage
estimate_hetero_mixed_poisson(
case_data,
fit_coeffs,
fit_var_cov_mat,
conf_int = 0.95,
protracted_g_value = 1,
gamma,
gamma_error
)Arguments
- case_data
Case data in data frame form.
- fit_coeffs
Fitting coefficients matrix.
- fit_var_cov_mat
Fitting variance-covariance matrix.
- conf_int
Confidence interval, 95% by default.
- protracted_g_value
Protracted \(G(x)\) value.
- gamma
Survival coefficient of irradiated cells.
- gamma_error
Error of the survival coefficient of irradiated cells.
Value
List containing estimated mixing proportions data frame, estimated yields data
frame, estimated doses data frame, estimated fraction of irradiated blood data frame,
AIC, and conf_int_* used.
Examples
#The fitting RDS result from the fitting module is needed. Alternatively, manual data
#frames that match the structure of the RDS can be used:
fit_coeffs <- data.frame(
estimate = c(0.001280319, 0.021038724, 0.063032534),
std.error = c(0.0004714055, 0.0051576170, 0.0040073856),
statistic = c(2.715961, 4.079156, 15.729091),
p.value = c(6.608367e-03, 4.519949e-05, 9.557291e-56),
row.names = c("coeff_C", "coeff_alpha", "coeff_beta")
)
fit_var_cov_mat <- data.frame(
coeff_C = c(2.222231e-07, -9.949044e-07, 4.379944e-07),
coeff_alpha = c(-9.949044e-07, 2.660101e-05, -1.510494e-05),
coeff_beta = c(4.379944e-07, -1.510494e-05, 1.605914e-05),
row.names = c("coeff_C", "coeff_alpha", "coeff_beta")
)
case_data <- data.frame(
ID= "example1",
N = 361,
X = 100,
C0 = 302,
C1 = 28,
C2 = 22,
C3 = 8,
C4 = 1,
C5 = 0,
y = 0.277,
y_err = 0.0368,
DI = 1.77,
u = 10.4
)
#FUNCTION ESTIMATE_HETERO_MIXED_POISSON
estimate_hetero_mixed_poisson(
case_data[1, ],
fit_coeffs = as.matrix(fit_coeffs),
fit_var_cov_mat = as.matrix(fit_var_cov_mat),
conf_int = 0.95,
protracted_g_value = 1,
gamma = 1 / 2.7,
gamma_error = 0
)
#> Warning: no observations informative at iteration 1
#> Warning: glm.fit: algorithm did not converge
#> Error in object$coefficients: $ operator is invalid for atomic vectors